

2025 Annual Conference - Innovations in Pavement Preservation

Development of a Field Test to Determine Chip Seal Aggregate Embedment

www.paama.org

Disclaimer

This investigation is sponsored by the Transportation Research Board (TRB) under the National Cooperative Highway Research Program (NCHRP) Program. Any opinions and conclusions expressed or implied in the resulting research products in this presentation are those of the individuals and organizations who performed the research and are not necessarily those of TRB; the National Academies of Sciences, Engineering, and Medicine; the Federal Highway Administration (FHWA); or NCHRP sponsors. Data reported are work in progress. Contents of this research presentation may have not been reviewed by the NCHRP project panel, nor do they constitute a standard, specification, or regulation. All data and copyrights are owned by the National Academy of Sciences.

NCHRP Project 10-124

Research Team

Pl: Adriana Vargas, Auburn University - NCAT

Co-PI: Andrew Braham, University of Arkansas

Malcolm Williamson, University of Arkansas - CAST

Angelia Payne, University of Arkansas - CAST

Scott Shuler, Shuler Consultants

- Chip seals are popular pavement preservation treatments
- Seal fine cracks in underlying pavement
- Prevent water intrusion
- Aggregate protects the asphalt layer and provides a skidresistant surface

	Expected Performance	
Treatment	Treatment Life (yr)	Pavement Life Extension (yr)
Chip seal		
Single course	3–7	5–6
Double course	5–10	8–10

(Peshkin et al. 2011)

Chip seal design

Determine:

Grade, type, and application rate for a bituminous binder

Given:

Aggregate size and type, surface condition of existing pavement, traffic volume

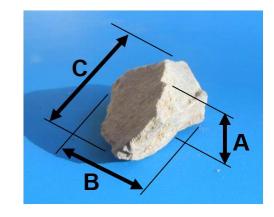
Design methods target embedment rate

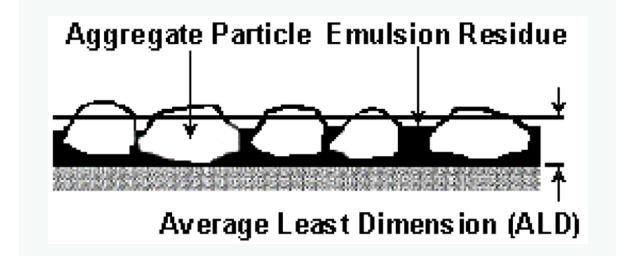
Typically 50-70%

Correct asphalt quantity, voids 50% to 70% filled

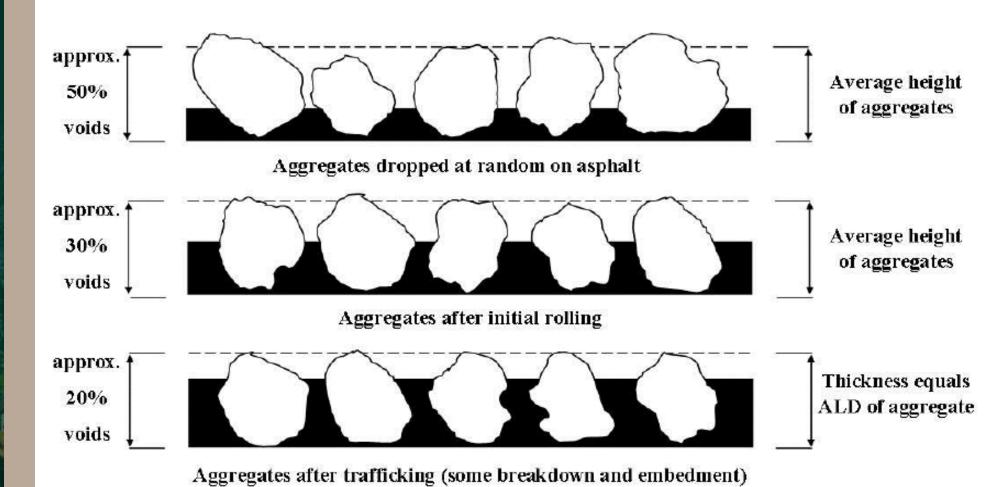
Insufficient asphalt, screenings not firmly held

Excess asphalt submerges chips and causes bleeding





Percent embedment (PE) is the percentage of the average least dimension (ALD) of the aggregate enveloped by the binder


ALD can be measured directly or computed based on particle size distribution and Flakiness Index

Proper embedment is a key component but field verification is not standardized Inspectors often rely on visual inspection

Objective

Identify, adapt, or develop a rapid field test method(s) to determine the percentage embedment depth of a uniformly placed chip seal of known aggregate gradation.

www.paama.org

Research Approach

Phase I

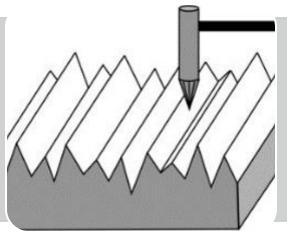
- Task 1: Literature Review
- Task 2: Preliminary Evaluation
- Task 3:Interim Report1

Phase II

- Task 4: Development of Work Plan
- Task 5:Interim Report

Phase III

- Task 6: WorkPlanExecution
- Task 7:Interim Report3
- Task 8: Technical Memorandum


www.paama.org

Literature Review

Identified several methods that could be used/adapted to measure embedment

- Volumetric
- Stylus profiling
- Laser-based
- Imagery-based

VOLUMETRIC

(sand patch, grease patch, putty impression, outflow meter)

PROS:

Very accurate, inexpensive

CONS:

Operator-dependent, time consuming

STYLUS PROFILING

PROS:

Very accurate, inexpensive

CONS:

Limited measuring range,

LASER-BASED DEVICES

(stationary, walking, high-speed, LiDAR)

PROS:

High resolution, large coverage area, fast, repeatable

CONS:

Higher cost, sensitivity to external variables

IMAGERY-BASED METHODS

(cross-section CRP, SLP)

PROS:

Accurate, potential for smartphone use

CONS:

Data processing, sensitivity to external variables

Literature and Practice Review

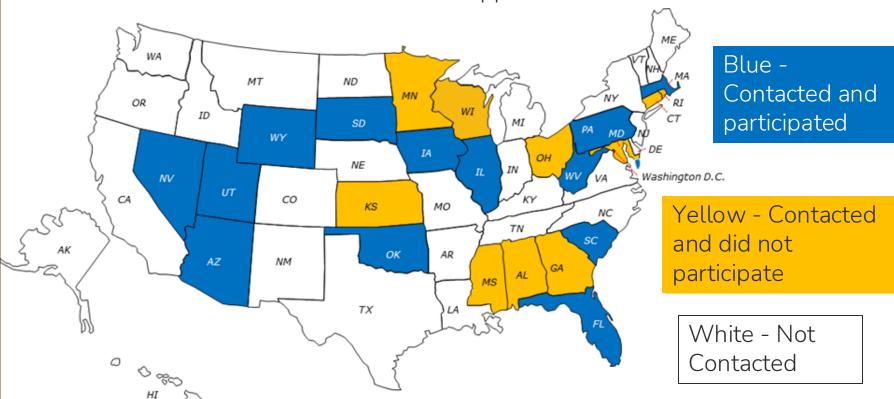
State DOT specifications

Most agencies maintain a standard specification for chip seals

22 agencies explicitly mention embedment

- "Proper" or "adequate" embedment
- Minimum number of roller passes

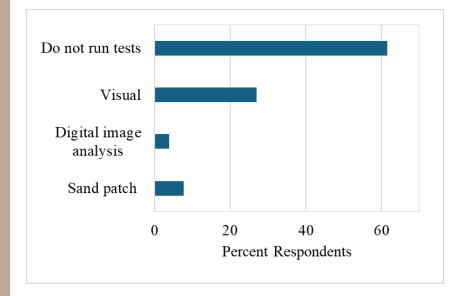
Arizona DOT	70% (80% above 4,000 ft elevation)	
Illinois DOT	50 – 70%. Provides materials application rate table based on aggregate.	
Nevada DOT	50 – 70%	
Ohio DOT	2/3 of the stone chip height	
Pennsylvania DOT	May require fog seal if less than 50%	
Rhode Island DOT	50%	
Utah DOT	50% before rolling; 70% after rolling	
Wyoming DOT	65 – 75% by measuring macrotexture depth	

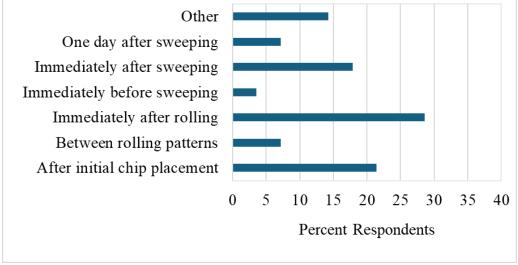

www.paama.org

Literature and Practice Review

Targeted survey

31 Responses:


- State agencies
- Contractors
- Local agencies
- Material suppliers



Literature and Practice Review

Tests used to determine aggregate embedment

Time when chip seal embedment is measured

Takeaways from Task 1

Embedment is a key component but rarely measured Various tests available that could serve this purpose

Range in complexity, accuracy, cost Relationship between texture and embedment

Proposed test has to be:

- Effective over range of embedment values
- Able to measure at different stages of construction
- PRACTICAL

- Rating system
- Based on 5 categories
 - Accuracy
 - Simplicity
 - Cost
 - Time
 - Practicality
- 1 to 5 scale; 1 = worst, 5 = best

SELECTED TESTS:

- Sand patch
- Laser Texture Scanner (LTS)
- Circular Texture Meter (CTM)
- Photogrammetry

www.paama.org

Preliminary Evaluation

Test methods have different parameters (MTD, MPD, etc.)

Can they capture the relationship between the parameter and the percent embedment?

Stage 1

Reference sample

Uniform particles of known dimensions embedded to a known depth

Not a true representation of a chip seal

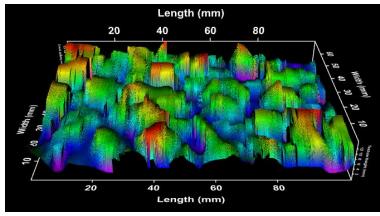
Objective is to compare measurements

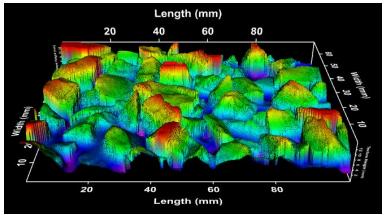
Stage 2

Aggregate samples

Use actual chip seal aggregates of different sizes Fabricate to design embedment (AASHTO R 102)

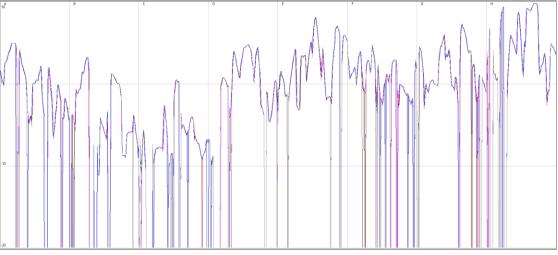
Determine ALD based on gradation and flakiness index



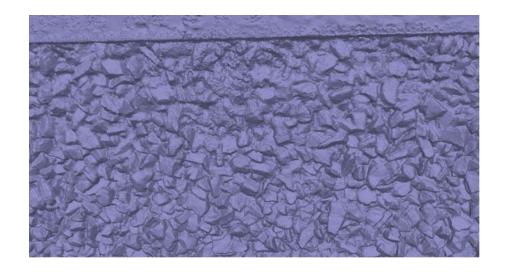


Testing - LTS

20 scan lines MPD = 4.72 mm Test time: 1.5 minutes


100 scan lines MPD = 4.85 mm Test time: 7.5 minutes

Testing - CTM


Circular profile is highly repeatable

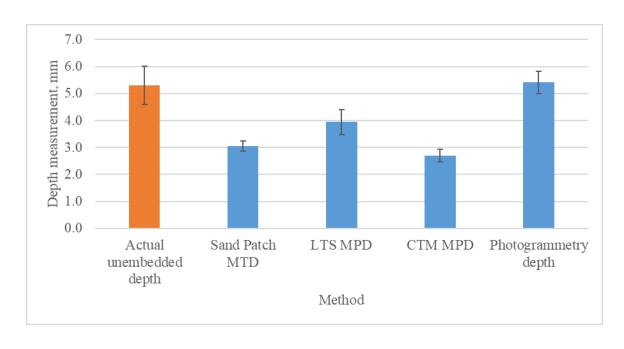
Testing - Photogrammetry

Digital Elevation Model (DEM) produced to measure maximum and minimum heights within a given neighborhood

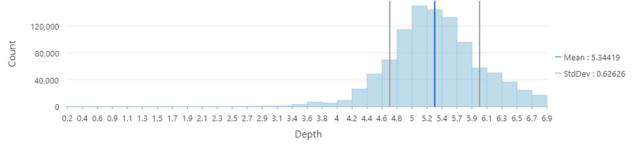
Testing – Sand Patch

Tried to match same locations as LTS measurements

Varied volume of glass beads depending on aggregate size



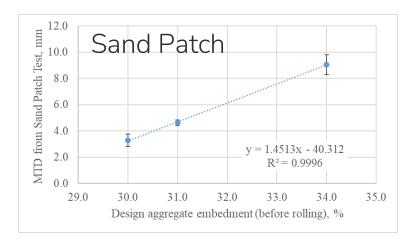
www.paama.org

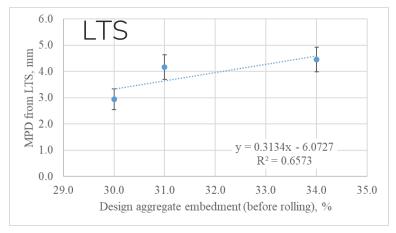

Preliminary Evaluation

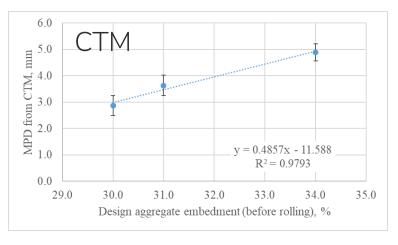
Results - Reference sample

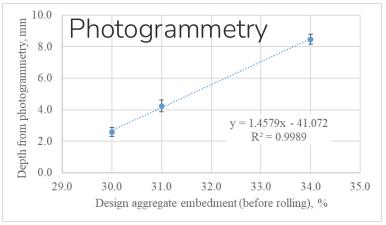
Photogrammetry is closest to actual unembedded depth

It also generates a depth distribution

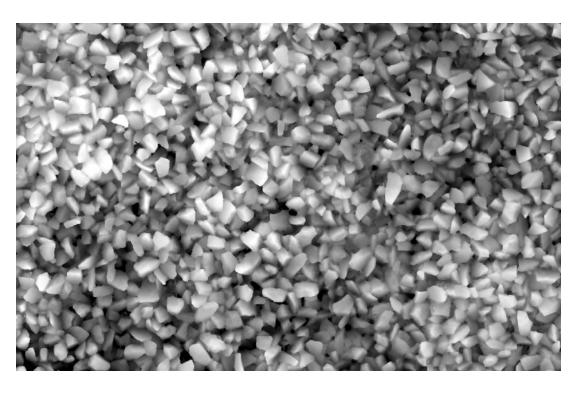


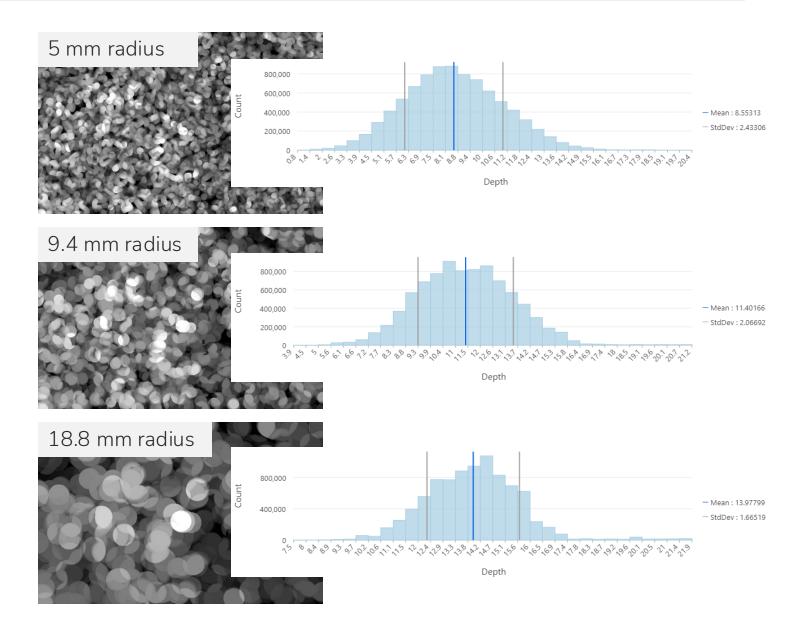



www.paama.org


Preliminary Evaluation

Results – Aggregate Samples





DEM from smartphone images ALD = 9.4 mm

Takeaways from Task 2

All methods capture the relationship between testing parameter and embedment

Sand patch and photogrammetry show better correlation LTS shows more variability

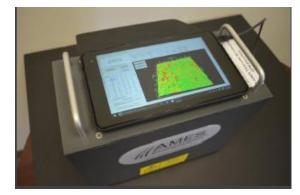
With some refinement, they may be used for field testing

Phase III Work Plan

Laboratory Experimental Plan

3³ full randomized factorial design Analyze individual and combined effects of each factor on the response

Factor	Levels	Response
Aggregate gradation Embedment level Aggregate color	Types A, B, and C 40%, 70%, 90% Light, medium, dark	Difference between known and measured
		embedment


Phase III Work Plan

Laboratory Experimental Plan

Consider four test methods

Test	Category	Equipment Details
Sand patch	Volumetric	Known volume of glass beads, spreader tool, measuring tape.
Laser scanning	Laser-based	Laser texture scanner
Photogrammetry	Imagery-based	DSLR and smartphone cameras
Structured light projection	Imagery-based	Blue light technology 3D scanner

www.paama.org

Phase III Work Plan

Field Evaluation

Identify modifications that may be needed to transition from controlled setting to an outdoor environment

Region	Possible State	Notable characteristics
Southeast	Texas	Wet-no freeze climate,
		extensive use of hot-applied
		binder
	Alabama or South Carolina	Wet-no freeze climate, use of
		lightweight aggregate
Midwest	North Dakota or South Dakota	Dry-freeze climate, typically low
		traffic applications
Rocky	New Mexico	Dry-no freeze climate, use of
Mountain		RAP aggregate
West	Arizona	Dry-no freeze climate, high
		traffic applications
Northeast	Massachusetts or New	Wet-freeze climate, use of
	Hampshire	rubber chip seals

Phase III Work Plan

Performance Evaluation

Develop and incorporate approach to assess chip seal performance based on percent embedment

Materials	Binder application	Performance Evaluation		
Materials	rate	Aggregate loss	Bleeding	
Two distinct combinations of aggregate gradation and aggregate color. One source of emulsified asphalt	Design (as determined by AASHTO R 102) • Low • High	Percent loss by weight of aggregate and visual assessment.	Macrotexture and visual assessment.	
emulsified asphalt.				

Disclaimer

This investigation is sponsored by the Transportation Research Board (TRB) under the National Cooperative Highway Research Program (NCHRP) Program. Any opinions and conclusions expressed or implied in the resulting research products in this presentation are those of the individuals and organizations who performed the research and are not necessarily those of TRB; the National Academies of Sciences, Engineering, and Medicine; the Federal Highway Administration (FHWA); or NCHRP sponsors. Data reported are work in progress. Contents of this research presentation may have not been reviewed by the NCHRP project panel, nor do they constitute a standard, specification, or regulation. All data and copyrights are owned by the National Academy of Sciences.

2024 Annual Conference

Questions?

www.paama.org