



# Preservation and Recycling Processes: NCAT-MnROAD Review

Adriana Vargas, PhD

# Why Pavement Preservation?



Costeffectiveness

**Sustainability** 

Condition improvement



# The Big Question

- Q: How long does a \_\_\_\_\_\_ treatment last?
- A:





# The Big Question

• NCAT has been studying "it depends" for 10+ years





# What is the PG Study?

- Pavement Preservation Group (PG) Study is a long-term pooled fund research effort
  - Currently in Phase II
  - TPF-5(375)
  - Led by MnDOT
- Objective is to quantify the life-extending benefits of various treatments



# PG Study Timeline



#### 70<sup>th</sup> Street

North cold recycled treatments placed on 70th Street in Albertville/Otsego, MN







#### 2015 NCAT estat

### NCAT-MnROAD

NCAT-MnROAD partnership is established.

Test sections placed on highvolume road (US-280) near Opelika, AL



#### **Northern Sections**

North Treatments placed on CSAH 8 and US 169 in Pease, MN



2016



#### 2012



#### Lee Road 159

First test sections placed on lowvolume county road in Auburn, AL

## Sponsors

**MnRQAD** 





## Test Locations

| Roadway              | LR-159 | <b>US-280</b> | CSAH-8 | US-169 | 70 <sup>th</sup> St |
|----------------------|--------|---------------|--------|--------|---------------------|
| Traffic volume       | Low    | High          | Low    | High   | High                |
| Avg. thickness, in   | 5.5    | 9.9           | 7.0    | 6.5    | 4.0                 |
| Section length, ft   | 100    | 528           | 528    | 528    | 500                 |
| No. Treated sections | 23     | 34            | 22     | 21     | 16                  |
| Years in service     | 10     | 7             | 6      | 6      | 3                   |



## **Current Status**



145 Test

**Sections** 





~90 lane mileyears worth of



~13 lane miles

## **Test Sections**

## **CRACK SEALING**

## CHIP SEALS

- Single layer
- Double layer
- Triple layer
- Single layers with crack sealing
- Fibermat
- Scrub seals\*

## MICRO SURFACES

- Single layer
- Double layer
- Single layers with crack sealing
- Fibers
- HiMA

## FOG SEALS

- Conventional
- Rejuvenating



## **Test Sections**

#### THIN OVERLAYS

- Virgin materials
- RAP/RAS
- Polymer modified binder
- HiMA
- UTBWC
- OGFC

### **COLD RECYCLING**

- Cold In-Place
- Cold Central Plant
- Full Depth Reclamation

#### COMBINATIONS



# Data Collection

- Crack mapping
- Roughness (IRI)
- Rutting
- Macrotexture
- FWD
- Surface friction
- Permeability
- Moisture\*

- 3 Performance indicators help us see the "big picture"
- MAP-21 criteria

| Category | % Cracking | Rutting, mm | IRI, in/mi |
|----------|------------|-------------|------------|
| Good     | < 5        | < 5         | < 95       |
| Fair     | 5 – 20     | 5 – 10      | 95 – 170   |
| Poor     | > 20       | > 10        | > 170      |



# Performance

- Different traffic and climate conditions allow identifying potential differences in performance
- Mode of deterioration
  - Warm climate cracking (wheel path)
  - Cold climate cracking (thermal) and roughness











# Highlights

What are some of the lessons learned and takeaways?

# Crack Sealing

Effective as stand-alone or in combination with chip seal, micro surfacing

- Route & seal better as stand-alone
- Overband seal better in combination
- Slow down crack deterioration
- No sealant failures

Some sealed cracks have re-cracked

## Stand-alone

#### Chip seal

### Micro surfacing



Rout & seal + micro surfacing

Standalone overband seal

## Fog Seals

Can delay deterioration (cracking), especially for pavements in good condition Application timeline Re-application

May experience friction reduction, restored within months



# **Chip Seals**

Can delay deterioration, especially for pavements in good condition

PRESERVING

PRESERVING

Cracking

Roughness progression Susceptible to snow plow damage Multiple layers may exhibit flushing Friction measurements still safe





#### **FIBERMAT CHIP SEAL**

#### LOW TRAFFIC

HIGH TRAFFIC





SOUTH

#### **TRIPLE CHIP SEAL**

#### LOW TRAFFIC

HIGH TRAFFIC





NORTH

# **Micro Surfacing**



Improved IRI and rutting performance Some sections >20% cracking but still functional Friction performance above warning threshold Caution – limestone aggregate Can withstand significant traffic when project is selected appropriately

#### SINGLE MICRO SURFACE

#### LOW TRAFFIC

HIGH TRAFFIC





#### **DOUBLE MICRO SURFACE**

#### LOW TRAFFIC

HIGH TRAFFIC





# Thinlays

Improved IRI and rutting performance Some sections >20% cracking but still functional BMD allowed using recycled materials with better performance Friction performance above warning threshold

RLSON

#### **VIRGIN THINLAY**

#### LOW TRAFFIC

HIGH TRAFFIC



![](_page_29_Picture_4.jpeg)

![](_page_30_Figure_0.jpeg)

#### MACROTEXTURE

FRICTION

![](_page_30_Picture_3.jpeg)

## Combinations

Conference of the state of the

Durable option, especially for low traffic pavements Combines crack mitigation properties from chip seal with nicer surface finish from micro surface/thinlay

![](_page_32_Figure_0.jpeg)

![](_page_32_Picture_1.jpeg)

# Cold Recycling

130

Can withstand high/heavy traffic with only a thin overlay surface

- Structural coefficients in 0.25 0.35 range
- More susceptible to rutting, roughness

USDOT 83092

Foamed CCPR on low volume road Surface is ¾" thinlay 11+ years in service

![](_page_35_Picture_0.jpeg)

# How do we quantify this benefit?

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

# Benefits

- Life-extending and condition-improving benefits
  - Compare treated pavement performance vs. untreated pavement
  - Account for existing condition
  - Difference in time to reach a threshold, performance indicator

![](_page_37_Picture_5.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

at AUBURN UNIVERSITY

![](_page_41_Picture_0.jpeg)

#### • More information: <u>www.ncat.us</u>

![](_page_41_Picture_2.jpeg)

#### Test Track

#### **Pavement Preservation**

**Construction Data** 

Observed Performance

Sponsors (2012-2020)

Pavement Preservation Group Study Resources

#### **Pavement Preservation**

The Moving Ahead for Progress in the 21st Century Act (MAP-21) defines pavement preservation as programs and activities employing a network level, longterm strategy that enhances pavement performance by using an integrated, cost-effective set of practices that extend pavement life, improve safety, and meet road user expectations.

About

NCAT

Test

Track

Pavement

Preservation

When the right treatment is applied to the right road at the right time, roads can be kept in good condition instead of performing costly rehabilitation and reconstruction alternatives later in the pavement's life when the structure has deteriorated.

#### Pavement Preservation Group Study

The pavement preservation group study is quantifying the life-extending and condition-improving benefits of different pavement preservation treatments and treatment combinations on low-volume and high-volume roadways in both northern and southern climates. By determining the field performance of treatments applied at various stages of pavement life and decay, historically broad performance expectations for various preservation options will be discretely quantified to allow agencies to make objective decisions regarding treatment selection. A second focus of the study is to develop specifications and recommended guidelines for quality assurance testing and inspection of pavement preservation treatments.

Southern Test Locations

![](_page_41_Picture_15.jpeg)

![](_page_41_Picture_16.jpeg)

![](_page_41_Picture_17.jpeg)

Education

& Training

Our Research

## aub.ie/PG-tool

![](_page_42_Figure_1.jpeg)

aub.ie/PG-webinars

NCAT & MnROAD

presents

### PG Study Findings Webinar Series

![](_page_43_Picture_5.jpeg)

**Chip Seal Webinar** 

Q

# In Summary...

- Pavement preservation is an effective strategy with sustainability benefits
- Understand the effect of different variables
  - Pre-treatment condition is critical
- Evaluate in terms or relevant parameters
  - What are we trying to address?

![](_page_44_Picture_6.jpeg)

# Thank You

## adriana.vargas@auburn.edu

![](_page_45_Picture_2.jpeg)